尽管沟通延迟可能会破坏多种系统,但大多数现有的多基因轨迹计划者都缺乏解决此问题的策略。最先进的方法通常采用完美的通信环境,这在现实世界实验中几乎是现实的。本文介绍了强大的Mader(RMADER),这是一个分散的异步多轨迹计划者,可以处理代理商之间的通信延迟。通过广播新优化的轨迹和忠实的轨迹,并执行延迟检查步骤,Rmader即使在通信延迟下也能够保证安全。Rmader通过广泛的仿真和硬件飞行实验得到了验证,并获得了100%的无碰撞轨迹生成成功率,表现优于最先进的方法。
translated by 谷歌翻译
Color is a critical design factor for web pages, affecting important factors such as viewer emotions and the overall trust and satisfaction of a website. Effective coloring requires design knowledge and expertise, but if this process could be automated through data-driven modeling, efficient exploration and alternative workflows would be possible. However, this direction remains underexplored due to the lack of a formalization of the web page colorization problem, datasets, and evaluation protocols. In this work, we propose a new dataset consisting of e-commerce mobile web pages in a tractable format, which are created by simplifying the pages and extracting canonical color styles with a common web browser. The web page colorization problem is then formalized as a task of estimating plausible color styles for a given web page content with a given hierarchical structure of the elements. We present several Transformer-based methods that are adapted to this task by prepending structural message passing to capture hierarchical relationships between elements. Experimental results, including a quantitative evaluation designed for this task, demonstrate the advantages of our methods over statistical and image colorization methods. The code is available at https://github.com/CyberAgentAILab/webcolor.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Timely and effective feedback within surgical training plays a critical role in developing the skills required to perform safe and efficient surgery. Feedback from expert surgeons, while especially valuable in this regard, is challenging to acquire due to their typically busy schedules, and may be subject to biases. Formal assessment procedures like OSATS and GEARS attempt to provide objective measures of skill, but remain time-consuming. With advances in machine learning there is an opportunity for fast and objective automated feedback on technical skills. The SimSurgSkill 2021 challenge (hosted as a sub-challenge of EndoVis at MICCAI 2021) aimed to promote and foster work in this endeavor. Using virtual reality (VR) surgical tasks, competitors were tasked with localizing instruments and predicting surgical skill. Here we summarize the winning approaches and how they performed. Using this publicly available dataset and results as a springboard, future work may enable more efficient training of surgeons with advances in surgical data science. The dataset can be accessed from https://console.cloud.google.com/storage/browser/isi-simsurgskill-2021.
translated by 谷歌翻译
Sampling-based model predictive control (MPC) can be applied to versatile robotic systems. However, the real-time control with it is a big challenge due to its unstable updates and poor convergence. This paper tackles this challenge with a novel derivation from reverse Kullback-Leibler divergence, which has a mode-seeking behavior and is likely to find one of the sub-optimal solutions early. With this derivation, a weighted maximum likelihood estimation with positive/negative weights is obtained, solving by mirror descent (MD) algorithm. While the negative weights eliminate unnecessary actions, that requires to develop a practical implementation that avoids the interference with positive/negative updates based on rejection sampling. In addition, although the convergence of MD can be accelerated with Nesterov's acceleration method, it is modified for the proposed MPC with a heuristic of a step size adaptive to the noise estimated in update amounts. In the real-time simulations, the proposed method can solve more tasks statistically than the conventional method and accomplish more complex tasks only with a CPU due to the improved acceleration. In addition, its applicability is also demonstrated in a variable impedance control of a force-driven mobile robot. https://youtu.be/D8bFMzct1XM
translated by 谷歌翻译
本文提出了一种新型的极化传感器结构和网络结构,以获得高质量的RGB图像和极化信息。常规的极化传感器可以同时获取RGB图像和极化信息,但是传感器上的极化器会降低RGB图像的质量。 RGB图像的质量与极化信息之间存在权衡,因为较少的极化像素减少了RGB图像的降解,但减少了极化信息的分辨率。因此,我们提出了一种方法,该方法通过在传感器上稀疏排列极化像素来解决权衡,并使用RGB图像作为指导来补偿以更高分辨率的低分辨率极化信息。我们提出的网络体系结构由RGB图像改进网络和两极分化信息补偿网络组成。我们通过将其性能与最先进的方法进行比较,确认了我们提出的网络在补偿极化强度的差异成分方面的优势:深度完成。此外,我们确认我们的方法可以同时获得更高质量的RGB图像和极化信息,而不是传统的极化传感器,从而解决了RGB图像质量和极化信息之间的权衡。基线代码以及新生成的真实和合成的大规模极化图像数据集可用于进一步的研究和开发。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
多态全斜形图像(WSI)注册是一个积极的研究领域。但是,目前尚不清楚当前的WSI注册方法将如何在现实世界数据集上执行。通过使用来自常规诊断的新数据集来评估现实世界中的适用性,以验证当前WSI注册方法的性能来验证当前WSI注册方法的性能。在本报告中,我们介绍了Acrobat挑战的解决方案。我们采用两步方法,包括刚性和非刚性变换。实验结果表明,验证数据集的中位数为1,250 UM。
translated by 谷歌翻译
为了促进医学图像分割技术的开发,提供了用于多功能医疗图像分割的大型腹部多器官数据集Amos,并通过使用数据集来构成AMOS 2022挑战。在本报告中,我们介绍了AMOS 2022挑战的解决方案。我们采用具有深远视觉的剩余U-NET作为我们的基本模型。实验结果表明,对于仅CT任务和CT/MRI任务,骰子相似系数和归一化表面骰子的平均得分分别为0.8504和0.8476。
translated by 谷歌翻译
我们研究了与中央服务器和多个客户的联合学习多臂强盗设置中最佳手臂识别的问题。每个客户都与多臂强盗相关联,其中每个手臂在具有未知均值和已知方差的高斯分布之后,每个手臂都能产生{\ em I.i.d。} \奖励。假定所有客户的武器集相同。我们定义了两个最佳手臂的概念 - 本地和全球。客户的当地最好的手臂是客户本地手臂中最大的手臂,而全球最佳手臂是所有客户平均平均值最大的手臂。我们假设每个客户只能从当地的手臂上观察奖励,从而估计其当地最好的手臂。客户在上行链路上与中央服务器进行通信,该上行链路需要每个上行链路的使用费用为$ C \ ge0 $单位。在服务器上估算了全球最佳手臂。目的是确定当地最佳武器和全球最佳臂,总成本最少,定义为所有客户的ARM选择总数和总通信成本的总和,但在错误概率上取决于上限。我们提出了一种基于连续消除的新型算法{\ sc fedelim},仅在指数时间步骤中进行通信,并获得高概率依赖性实例依赖性上限,以其总成本。我们论文的关键要点是,对于任何$ c \ geq 0 $,错误概率和错误概率足够小,{\ sc fedelim}下的ARM选择总数(分别为\ the总费用)最多为〜$ 2 $(reves 。〜 $ 3 $)乘以其在每个时间步骤中通信的变体下的ARM选择总数的最大总数。此外,我们证明后者在期望最高的恒定因素方面是最佳的,从而证明{\ sc fedelim}中的通信几乎是无成本的。我们从数值验证{\ sc fedelim}的功效。
translated by 谷歌翻译